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Abstract. This paper is devoted to the evaluation of the pionic scalar density at finite temperature and
baryonic density. We express the latter effect in terms of the nuclear response evaluated in the random
phase approximation. We discuss the density and temperature evolution of the pionic density which governs
the quark condensate evolution. Numerical evaluations are performed.

PACS. 14.40.Aq π, K and η mesons – 24.85.+p Quarks, gluons, and QCD in nuclei and nuclear processes

1 Introduction

Pions play a crucial role in chiral symmetry restoration,
due to their Goldstone boson character. The amount of
restoration is measured by the modification of the order
parameter, i.e. the quark condensate density, with respect
to the vacuum value. In this context the evaluation of
the expectation value of the squared pion field, linked to
the scalar density of pions ρπ

S by ρπ
S = mπ〈Φ2〉, is of a

great interest. For a single nucleon this quantity governs
the total amount of chiral symmetry restoration of pionic
origin, according to [1,2]:

m2
π

2

∫
d3x〈N |Φ2(x)|N〉 =

2mq

∫
d3x〈N |∆πqq(x)|N〉 = Σπ

N =
mπ

2
Nπ, (1)

where Nπ is the scalar number of pions in the nucleon
cloud, Σπ

N is the part of the nucleon Σ commutator of pi-
onic origin and 〈N |∆πqq(x)|N〉 represents the correspond-
ing modification of the quark condensate with respect to
the vacuum value. Similarly, in a uniform nuclear medium
of density ρ, or in a heat bath, the evolution of the quark
condensate originating from the pions is linked, to one-
pion loop order, to the average value 〈Φ2〉 by

∆π〈q̄q(ρ, T )〉
〈q̄q(0, 0)〉 = −〈Φ2〉

2f2
π

. (2)

The same quantity 〈Φ2〉 governs also the quenching
factor, 1 − 〈Φ2〉/3f2

π , of coupling constants such as the
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nucleonic axial coupling constant gA or the pion decay
one fπ, originating from pion loops, which is the coun-
terpart of the mixing of axial and vector currents [3,4].
This type of quenching has to be seen as a manifestation
of chiral symmetry restoration and should also apply to
the case of ρ-meson excitation by virtual photons as en-
ters in relativistic heavy-ion collisions. It is therefore in-
teresting to evaluate the quantity 〈Φ2〉 in the conditions
of such experiments. Now, the fireball which is the source
of the dileptons contains, besides thermal pions, a sig-
nificant residual baryonic background We have therefore
to understand how the pion density evolves at finite val-
ues of both temperature and baryonic chemical potential.
The first-order approximation for the quantity 〈Φ2〉 adds
the values for a pure heat bath and for a cold baryonic
medium, writing with obvious notations:

〈Φ2〉(ρ, T ) = 〈Φ2〉T (ρ = 0) + 〈Φ2〉ρ(T = 0). (3)

However, this approximation is likely to be crude since
the temperature has an effect on the pion density of the
nuclear medium and on the other hand the presence of the
baryonic background modifies the number of pions ther-
mally excited. As an illustration of the second point, the
pion density in the baryonic vacuum is fixed by the Bose-
Einstein factor which is (eωk/T − 1)−1 for pions of mo-
mentum k, with ωk =

√
k2 +m2

π. In the nuclear medium
the pion becomes a quasi-particle with a broad width. It
can decay for instance into a particle-hole pair which has
a smaller energy than the free pion. Its excitation is then
favored by the thermal factor. There is therefore a mutual
influence between temperature and density that we will
investigate.
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Nπ = mπ

∫
d3x〈N |Φ2(x|N〉 = mπ 3

g2
πNN

4M2

×
∫

d3q

(2π)3
q2

{
1

ωq

[
1

2ωq

1

(εq + ωq)2
+

1

2ω2
q

1

(εq + ωq)

]
v2(Q2) +

4

9

(
gπN∆

gπNN

)2

×
∫ ∞

0

dω

ωq

[
1

2ωq

1

(ω + ωq)2
+

1

2ω2
q

1

(ω + ωq)

]
v2(Q2)

(
− 1

π
Im

1

ω − ω∆ + i(Γ∆/2)

)}
. (9)

The article is organized as follows. In the second sec-
tion we evaluate the pion density of a nuclear medium
at zero temperature. We relate this quantity to the nu-
clear response to a pion-like excitation. We evaluate this
response in the RPA scheme, taking also into account
the two particle-two hole(2p-2h) excitations. Within this
framework, we study the deviation with respect to the in-
dependent nucleon approximation. In the third section we
introduce the effect of the temperature through the mod-
ification of the nuclear responses. In the fourth section we
incorporate the influence of the finite baryonic chemical
potential in the heat bath case.

2 Pion scalar density in the cold nuclear
medium

This quantity was discussed in relation to the quark con-
densate modification by Chanfray and Ericson [1]. They
discussed its deviations with respect to free nucleons, in-
troducing the nuclear response to pion-like excitation,
treated in the static case MN → ∞. The extension to the
non-static situation can be performed through the time-
ordered graphs of fig. 1 where the cross represents the
point at which the pions are created or annihilated. The
pion momentum is denoted q and ω is the excitation en-
ergy of the nuclear system in the intermediate state. The
sum of the four graphs leads to the following expression
which has also been derived with a different method in
ref. [5]:

〈Φ2〉 = ρ

A
3
g2

πNN

4M2
N

∫
d3q

(2π)3 2ω2
q

×
∫ ∞

0

dω
[

1
(ω + ωq)2

+
1
ωq

1
(ω + ωq)

]

× v2
(
Q2

)
RL(ω, q), (4)

where Q2 = ω2 − q2, v(Q2) is the form factor of the pion
vertex for which we use a monopole form

v
(
Q2

)
=
Λ2 −m2

π

Λ2 −Q2
. (5)

Finally, RL represents the spin-isospin longitudinal re-
sponse function:

RL(ω, q)=
∑

n

∣∣∣∣
〈
n

∣∣∣∣
A∑

i=1

σi · qτa
i e

iq·ri

∣∣∣∣0
〉∣∣∣∣

2

δ(ω − En). (6)

(d)(a) (b) (c)

Fig. 1. Time-ordered graphs for pion exchange.

In the actual calculation, we add in the response RL the
excitation of the delta-resonance with the standard re-
placement:

σi · qτa
i −→ gπN∆

gπNN
S†

i · q(T a
i )

†, (7)

where S†(T †) is the spin (isospin) transition operator con-
necting the spin (isospin) 1

2 and 3
2 states [6]. Note that for

a matter of convenience we have incorporated in this op-
erator the ratio of the πN∆ and πNN coupling constants.
We have also assumed the same form factors, v(Q2), at the
πNN vertex and at the πN∆ vertices. Finally we recall the
link between the response function and the polarization
propagator Π(ω, q, q′) which we will use in the following:

R(ω, q) = −V

π
ImΠ(ω, q, q). (8)

We will first discuss the result for the free nucleon.

2.1 Free nucleon

In the nucleon case, where the response RL reduces to a
simple expression, eq. (4) provides for the (scalar) pion
number Nπ in the nucleon cloud:

see equation (9) above

In the above equation we have used the following nota-
tions: εq = q2/2MN and ω∆ =M∆ −MN + q2/2M∆. The
energy dependence of the delta width Γ∆ is taken from
the analysis of the pion-nucleon scattering [6].

Our numerical inputs for the evaluation of Nπ are de-
fined as follows. Without form-factor the integrals diverge
linearly. The resulting value is then quite sensitive to the
cut-off function. We stress, however, that the specific case
of the single nucleon is not the purpose of this paper.
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Fig. 2. Feynman diagrams for the 2p-2h processes. The double
line represents the delta-resonance.

It is for us an element of comparison to introduce the nu-
clear effects. Since we want to restrict the calculation to
a region where nuclear effects are reasonably under con-
trol, we have limited the integrals to: q = 1GeV and
ω = 1GeV. The parameters are chosen so as to obtain
a value Σπ

N = 1
2mπNπ = 30MeV which is well in the ac-

cepted range [7–9]. This is achieved with Λ = 1GeV and
(gπN∆/gπNN)2 = 3.8.

2.2 Infinite nuclear matter

We now turn to the case of infinite nuclear matter. In or-
der to evaluate the response functions, we use the method
of Delorme and Guichon [10] who calculated the zeroth-
order response in the local density approximation and then
solved exactly the RPA equations. Their zeroth-order re-
sponse function also includes the 2p-2h excitations. The
corresponding Feynman diagrams of such processes are
displayed in fig. 2.

They are calculated in two steps. First we single out
the contributions which reduce to a medium modifica-
tion of the ∆ self-energy, for which the parametrization
of ref. [11] is used. This parametrization includes some
3p-3h excitation states as well. For the rest we use the re-
sults of Shimizu-Faessler [12] who evaluated the two nucle-
ons p-wave pion absorption at threshold (ω = mπ), from
which the ∆ self-energy part, already taken into account,
is separated out. As for each the remaining contributions,
an energy extrapolation suggested by the many-body di-
agrammatic interpretation is performed.

We solve the RPA equations in the ring approxima-
tion: Π = Π0 +Π0VΠ. Here V is the particle-hole (p-h)
interaction with the standard formulation: V = Vπ + Vg′ ,
where the second piece is the short-range Landau-Migdal
part. More explicitly with our definition of the response,
V reads

V =
v2(Q2)

q2

(
q2

Q2 −m2
π

+ g′
)
. (10)

The corresponding Landau-Migdal parameters g′ are dif-
ferent in the various channels: g′NN for the NN sector,
g′∆∆ for the ∆ one, g′N∆ for the mixing of NN and ∆N
excitations. We adopt the following values:

g′NN = 0.7, g′N∆ = g′∆∆ = 0.5. (11)

The results are illustrated on fig. 3 which shows the en-
ergy dependence of the zeroth-order and RPA responses,
for a fixed value of the momentum q = 300MeV. The

Fig. 3. Response function per nucleon at normal nuclear
density as a function of the energy for a fixed momentum
q = 300MeV. The dot-dashed and continuous lines represent,
respectively, the zeroth-order and RPA responses.

bare response presents a low-energy peak corresponding
to the NN−1 excitation and a high-energy one (∆N−1 ex-
citations). The figure displays the RPA enhancement of
the low-energy peak, introduced by Alberico et al. [13],
which arises from the attractive nature of the p-h inter-
action. It also displays the collective behaviour of the ∆
excitation with a splitting into two branches.

Once the energy and momentum integrations are per-
formed, we find, as in ref. [1], a moderate increase as com-
pared to the free nucleon value, with the values per nu-
cleon at normal nuclear density:

Σ̃π
N ≡ Σπ

A

A
= 38.5MeV and

Nπ
A

A
= 0.55 (12)

versus 30MeV and 0.40, respectively, for the free nucleon.
The quantity Σ̃π

N is the (medium modified) effective sigma
commutator.

More precisely, we decompose the response function Π
(accordingly Σπ) into four types, depending on the kind
of states which are excited at each external vertices: NN,
N∆, ∆N and ∆∆ (fig. 4). The density evolution of the
different components of the sigma commutator are repre-
sented in fig. 5 both without and with RPA. Notice that,
in the absence of the RPA, there is already a contribu-
tion of the N∆ channel at finite density due to the 2p-2h
excitations. The overall RPA increase of the sigma com-
mutator mainly comes from that of the ΣN∆+Σ∆N parts.
These last quantities embody the mixing of the∆N−1 con-
figurations into the NN−1 ones. This is well known to be
responsible for the enhancement Ä of the low-energy re-
sponse (i.e. the NN−1 excitations) [14].
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Lab−1(ω,q) = −NS,I

4π2

∫
k2 dk d(cos θ)

f(ωb
k)(1− f(ωa

k+q))

ω − ωa
k+q + ωb

k +
i
2
Γ a(ωb

k + ω) + i
2
Γ b(ωa

k+q − ω)

− f(ωb
k)(1− f(ωa

k+q))

ω + ωa
k+q − ωb

k +
i
2
Γ a(ωb

k − ω) + i
2
Γ b(ωa

k+q + ω)
, (13)

∆Ν ΠN∆Π ∆∆

, , ,

ΠNN Π

Fig. 4. Symbolic representation of the NN, ∆N, N∆ and ∆∆
response functions. The delta-resonance is represented by the
double line.

Fig. 5. Density evolution of the different components of the
effective sigma commutator: left (right) figure is without (with)
RPA.

3 Inclusion of temperature

3.1 Influence on the virtual pion cloud

We now introduce the temperature, via the Matsubara
formalism: all the integrals over energy are replaced by an
infinite sum over Matsubara frequencies. For the NN−1

sector, the generalized Lindhart function (the imaginary
part of which is proportional to the response function)
at finite temperature is discussed in textbooks (see, e.g.,

ref. [15]). The result is the replacement of the Heavi-
side functions that characterize the occupation of fermion
states at zero temperature by the Fermi-Dirac distribu-
tions. We have generalized this procedure to particle with
width and applied it to ∆-N−1, N-∆−1 and ∆-∆−1 rings.
The generalized Lindhart function Lab−1 for a process in-
volving a particle of type (a) and a hole of type (b) is
found to be

see equation (13) above

where NS,I is a constant arising from the summation of
spin and isospin and Γ a,b(ω) represents the width of the
particle of type (a,b) for an energy ω. The occupation
number of hadron species a is

f(ωa
k) =

1
exp((ωa

k − µ)/T ) + 1
, (14)

where µ is the (common) chemical potential for baryons,
the value of which fixes the baryonic density ρ at a given
temperature. As implicitly stated before, we limit our-
selves to nucleons and deltas, i.e. ρ = ρN + ρ∆.

Concerning the ∆ width, things are somewhat more
complicated. In the medium, the pionic decay channel
∆ → πN is partly suppressed due to Pauli blocking. At
the same time, other channels open, the pion being re-
placed by 1p-1h, 2p-2h, etc. At normal density and zero
temperature the pionic channel remains dominant accord-
ing to ref. [11]. It represents approximatively 75% of the
total width (� 90MeV to be compared with 120MeV
at the resonance energy) and the non-pionic decay chan-
nels only the remaining 25%. In view of the difficulties
of a full calculation of the temperature effects, we have
adopted the simplified following strategy: we have kept
the parametrization of ref. [11], derived at T = 0, for the
non-pionic decay channel. We have introduced the tem-
perature effects via the Matsubara formalism only for the
main pionic part of the width.

Figure 6 displays the temperature evolutiom of the
zeroth-order response function. The dashed line, which
represents the T = 0 case, exhibits the NN−1 and ∆N−1

structures. Increasing temperature tends to wash out more
and more these peaks. At the same time an overall sup-
pression effect occurs. Note that the ∆ branch is less af-
fected by the temperature because of the higher energies
involved. In the RPA case (see fig. 7), one observes a sim-
ilar behavior: an important general decrease and the loss
of the lower energy structures.

We now turn to the question of the thermal pions
present in the heat bath.
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Fig. 6. Zeroth-order response at a baryonic density equal to
half nuclear matter density (ρ = 0.25m3

π) as a function of
energy for a fixed momentum q = 300MeV for three tempera-
tures. Dashed lines: T = 0. Thin full line: T = 50MeV. Thick
full line: T = 150MeV.
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Fig. 7. Same as before but for the RPA response.

3.2 Inclusion of thermal pions

The effects previously discussed concerned only the mod-
ification, due to the temperature, of the virtual pion den-
sity present in the nuclear medium. At finite tempera-
ture, thermally excited pionic modes (quasi-pions) are also
present and they give an additional contribution to the
pion scalar density. Here for a better illustration we give
the result for 〈Φ2〉/2f2

π which according to eq. (2) gov-
erns the amount of chiral symmetry restoration of pionic

origin. We start from the general result given in ref. [5]:

〈Φ2〉
2f2

π

=
3
2f2

π

∫
d3q

(2π)3

×
∫ ∞

0

dω
[
(1 + 2n(ω))

(
− 1
π

)
ImD(ω, q)

−
(
− 1
π

)
ImD0(ω, q)

]
,

where the vacuum contribution has been explicitly sub-
tracted. In the above equation n(ω) = 1/(exp(ω/T )−1) is
the Bose occupation factor and D−1(ω, q) = D−1

0 (ω, q)−
(gπNN/2MN)2k2Π the inverse quasi-pion propagator. For
convenience, we separate the contribution surviving at
zero temperature expressible in terms of the full spin-
isospin longitudinal response function from the contribu-
tion with an explicit thermal factor:

〈Φ2〉
2f2

π

=
ρ

A

3
2f2

π

g2
πNN

4M2
N

∫
d3q

(2π)3

×
∫ ∞

0

dω
(

1
2ω2

q (ω + ωq)2
+

1
2ω3

q (ω + ωq)

)

× v2(Q2)RL(ω, q) +
3
2f2

π

∫
d3q

(2π)3

×
∫ ∞

0

dω n(ω)
(
− 2
π

)
ImD(ω, q)

≡ ρΣ̃π
B

f2
πm

2
π

+
〈Φ2〉T
2f2

π

.

The second identity defines the quantities Σ̃π
B and 〈Φ2〉T ,

associated, respectively, with the first and second pieces of
the r.h.s. of the above equation: Σ̃π

B represents an effective,
temperature-dependent, sigma commutator per baryon,
whereas 〈Φ2〉T is the scalar density of quasi-pions ther-
mally excited.

4 Results

In order to display the condensate evolution, all the forth-
coming figures show its relative decrease, i.e. the quan-
tity Φ2/2f2

π according to eq. (2). We stress again that
the points of interest are the influence of temperature on
the nuclear pionic cloud contribution, the influence of the
baryonic density on the thermal pions one and finally how
large is the deviation from the additive approximation of
eq. (3).

We first present on fig. 8 the contribution of the virtual
pion cloud alone (term in Σ̃π

B). Each box shows the tem-
perature evolution at fixed baryonic density. It illustrates
the suppression effect of the temperature which originates
in the quenching of the nuclear response previously men-
tioned. The increase with baryonic density observed in
this figure reflects the obvious fact that the pionic density
follows the baryon one.

In fig. 9 we present in the same fashion the condensate
decrease due to thermal pions alone (term in 〈Φ2〉T /2f2

π).
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Fig. 8. Relative decrease of the condensate coming from the
virtual pion cloud part as a function of the density and the
temperature. Each box corresponds to a fixed density as in-
dicated. The density increases by steps of 0.2ρ0 from left to
right between 0.4 and 1.6ρ0. In each box the points correspond
to temperature increases by steps of 0.10mπ between 0.05 and
1.05mπ.

Fig. 9. Same as the preceding figure but for the thermal pions.
As a guidance in order to display the influence of the density
on the thermal pions, points of equal temperature are joined
by a dashed line.

The iso-temperature curves show the influence of the bary-
onic density which pushes down the quasi-pion excitation
energy, thus increasing their thermal excitation.

Finally in the last figure (fig. 10) we present the sum
of both contributions. The competition between the varia-
tions of both terms with respect to the temperature is the
source of the observed parabolic-type shape. For compar-
ison, we have plotted in open circles the approximation of

Fig. 10. Sum of both contributions of the virtual pion cloud
and the thermal pions (black circles). For comparison the open
circles represent the additive approximation of eq. (3)

eq. (3) where the effect of the thermal pions at zero den-
sity is simply added to that of the pion cloud at zero tem-
perature. This approximation does not display the hollow
shape of the exact calculation: it overestimates the latter
by at most 15% in the medium part of the temperature
range we have considered, the deviation becoming quite
small beyond T ≈ 90–100MeV. In this region the decrease
of the pionic cloud contribution with temperature (fig. 8)
practically compensates the enhancement of the thermal
excitations by density effects. The most important conclu-
sion which can be drawn from fig. 10 is that, due to the
nuclear pions, the pion scalar density is much larger than
in the absence of nuclear effects, already for densities of
the order of 0.6ρ0.

5 Conclusion

In conclusion we have studied the evolution of the quark
condenaste of pionic origin under the simultaneous influ-
ence of the baryonic density and temperature. It is related
to the scalar pionic density which comes on the one hand
from the virtual nuclear pions and on the other hand from
the thermally excited ones. We have expressed the first
contribution in terms of the nuclear response to a pion-
like excitation and evaluated it for the case of nuclear
matter in the RPA scheme, first at zero and then at fi-
nite temperature. We have shown that the RPA produces
a sizeable enhancement (≈ 30%), while instead the tem-
perature washes out the peaks and suppresses the nuclear
response, hence decreasing the virtual pion density.

As for the thermally excited pions we have shown that
the presence of the baryonic background appreciably en-
hances their number. The cause has to be found in the low-
ering of the quasi-pion excitation energies, which favours
their thermal excitation. When the densities of both types
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of pions are added, the mutual influences which go in op-
posite directions cancel their effects to a large extent. In
the density and temperature domain that we have ex-
plored, the additive assumption of eq. (3) which neglects
the mutual influence is a good approximation. It deviates
from the exact result by no more than 15%, the deviation
being maximum around T ≈ 50MeV. At this T value the
additive approximation slightly overestimates the pionic
density.

Our study has shown that, even at moderate baryonic
density, the virtual nuclear pions are a major component
of the overall scalar pion density. As an example, at nu-
clear matter density, they dominate in the temperature
range we have considered, i.e. up to at least T ≈ 150MeV.
Since the pion is the agent for the mixing of the vector and
axial correlators, the consequence of our study is that the
existence of a baryonic background, if any, should not be
ignored in this mixing.
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